

CORRELATION ANALYSIS

- · Correlation = causation
- Strength and direction of a relationship between two random variables
- · Choose variables for model building
- · Correlation types
 - Between continuous (interval, ratio) variables
 - Between ordinal variables
 - Between continuous RV and dichotomous (binary) RV
 - Between two binary variables

1. Pearson's Correlation Coefficient

- · Pearson Product Moment Correlation
- Strength and direction of linear relationship between two cont.
 RVs

$\rho = r =$	(Y, X) VOJ	Cov(x,y) = + = (x; -x)(y; -y)
J	Ox Oy	
	~)	

TABLE 8.1	Data on age and average call duration (in seconds)										
Age	14	15	18	19	20	24	25	27	29	30	
Call Duration	n 540	544	567	548	550	520	512	516	511	511	
Age	33	36	38	39	40	41	42	43	45	48	
Call Duration	n 490	487	472	460	455	463	440	422	411	397	

TI

n

- · Correlation varies from -1 to +1
- · Simplification of r

$$r = n \underbrace{\sum_{i=1}^{n} x_{i} y_{i}}_{n \underbrace{\hat{z}}_{i=1}} - \underbrace{\sum_{i=1}^{n} x_{i} y_{i}}_{n \underbrace{\hat{z}}_{i=1}} + \underbrace{\sum_{i=1}^{n} x_{$$

- If r is the, positive correlation and if r is -ve, negative correlation
- If r is correlation coefficient for $x \in Y$. Then the correlation coefficient for $z_1 = ax + b$ and $z_2 = cY + d$ is r if the signs of a $\in c$ are same and -r if the signs are different
- · Coefficient of Determination $R^2 = r^2$
- S: The average share prices of two companies over the past 12 months are shown in the table. Calculate the Pearson correlation coefficient.

×	¥.	
274.58	219.50	$\bar{x} = 292.972$
287.96	242.92	u = 229.829 solved using
290.35	245.90	5,x1x= 811242.980 , fx-991 EX
320.07	256.80	$z_{xy} = 811242.980$ fx-991 ex $z_{x}^{2} = 1035905.663$ (calculator
317.40	240.60	3X 1033 103. 663 (CAICAIATOT
319.53	245.23	$\mathcal{E}y^2 = 637209.3349$
301.52	232.09	0
271.75	222.65	$r = Sxy - n\overline{x}\overline{y}$
323.65	231.74	
259.80	214.43	$\sqrt{g_{\chi_i^2}} - n\pi^2 \sqrt{g_{\chi_i^2}} - n\overline{y}^2$
263.02	201.86	© vibhas notes 2021
286.03	204.23	r= 0.728 } can calculate directly with calc

.: x & y are positively, strongly correlated

Spurious correlation

- · Due to hidden variables
- · C→A & C→B, does A→B
- Eg: stork population & human birth rate hidden variable: available nesting area
- · Eq: doctors & deathe: Young, 2001
- Eg: Divorce rate in Maine and per capita consumption of margarine : tylervigen.com
- · Correlation => relation

Hypothesis Test for Correlation Coefficient

 H_0 : $\rho = 0$ (there is no correlation between two random variables)

 H_A : $\rho \neq 0$ (there is a correlation between two random variables)

- Sampling distribution of correlation coefficient r follows
 t distribution with n-2 degrees of freedom (df)
- 2 df lost because we estimate two mean values from the data

- The mean of the sampling distribution is p Cpopulation correlation coefficient)
- · standard deviation of the sampling distribution is

- The t-statistic for the null hypothesis $U = t_{1/2}, n-2 = \frac{r-p}{r}$
- · When p=0

$$U = t_{\alpha/2}, n-2 = \frac{r}{\sqrt{\frac{1-r^2}{n-2}}}$$

B: The average share prices of two companies over the past 12 months are shown in the table. Conduct the following two hypothesis tests at $\alpha = 0.05$: (a) The correlation between share prices of two companies is zero.

(b) The correlation between share prices of two companies is at least 0.5.

x	Y	
274.58	219.50	(a) $H_0: \rho = 0$ $d = 0.05$
287.96	242.92	$H_a = \beta \neq 0$
290.35	245.90	
320.07	256.80	r = 0.7279
317.40	240.60	
319.53	245.23	$U = t_{1/2,10} = 0.7279 = 3.357$
301.52	232.09	1-0.72792
271.75	222.65	Νιο
323.65	231.74	
259.80	214.43	Chwo-tailed test)
263.02	201.86	© vibhas notes 2021
286.03	204.23	

x/2 is between 0.005 and 0.001 7 x is between 0.01 and 0.002

TABLE A.3 Upper percentage points for the Student's / distribution

					α				
ν	0.40	0.25	0.10	0.05	0.025	0.01	0.005	0.001	0.0005
1	0.325	1.000	3.078	6.314	12,706	31.821	63.657	318.309	636.619
2	0.289	0.816	1.886	2.920	4.303	6.965	9.925	22.327	31.599
3	0.277	0.765	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	0.271	0.741	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	0.267	0.727	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	0.265	0.718	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	0.263	0.711	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	0.262	0.706	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	0.261	0.703	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	0.260	0.700	1.372	1.812	2.228	2.764	3.169	4.144	4.587

... We can reject H₀ and accept H_a \Rightarrow the correlation in share prices is not 0

(6) $H_0: p \ge 0.5$ Ha: p < 0.5

$$\frac{U=t_{x_{10}}}{\sqrt{\frac{1-0.7279}{10}^{2}}} = \frac{0.7279}{10} = \frac{1.051}{10}$$

Right-tailed test

d is between 0.10 and 0.25 }

. We cannot reject to as the p-value vibilities 2021

2. Spearman Rank Correlation

· Ordinal variables (Ps - population, rs - sample)

$$r_{s} = 1 - \frac{6 \mathcal{E}}{n(n^{2} - 1)}$$

 D_i = difference in the rank of case i $(X_i - Y_i)$

Sampling distribution of rs follows t-distribution with mean
 fs and SD with n-2 degrees of freedom

$$s = \sqrt{\frac{1-r_a^2}{n-2}}$$

6: Ranking of 12 countries under corruption and Gini Index (wealth discrimination) are shown in Table. Calculate the Spearman correlation and test the hypothesis that the correlation is at least 0.2 at $\ll = 0.02$.

Countries	1	2	3	4	5	6	7	8	9	10	11	12
Corruption	1	4	12	2	5	8	11	7	10	3	6	9
Gini Index	2	3	9	5	4	6	10	7	8	1	11	12

 $r_{s^{2}} = 1 - \frac{6(1+1+9+9+1+4+1+0+4+4+25+9)}{12(143)}$

- 1-34 - 0.7622 © vibhas notes 2021

Country	Corruption Rank (X;)	Gini Index (Y,)	$D = X_i - Y_i$	D ²
1	1	2	-1	1
2	4	3	1	1
3	12	9	3	9
4	2	5	-3	9
5	5	4	1	1
6	8	6	2	4
7	11	10	1	1
8	7	7	0	0
9	10	8	2	4
10	3	1	2	4
11	6	11	-5	25
12	9	12	-3	9
				$\sum_{i=1}^{12} D_i^{\pi}$ 68

Ho: p < 0.2 x = 0.02Hq: $p \ge 0.2$

TABLE A.3 Upper percentage points for the Student's / distribution

					α				
ν	0.40	0.25	0.10	0.05	0.025	0.01	0.005	0.001	0.0005
1	0.325	1.000	3.078	6.314	12.706	31.821	63.657	318.309	636.619
2	0.289	0.816	1.886	2.920	4.303	6.965	9.925	22.327	31.599
2 3 4	0.277	0.765	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	0.271	0.741	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	0.267	0.727	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	0.265	0.718	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	0.263	0.711	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	0.262	0.706	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	0.261	0.703	1.383	1.833	2.262	2.821	3.250	4.297	4.78.1
10	0.260	0.700	1.372	1.812	2.228	2.764	3.169	4,144	© vibhas notes 202

p-value between 0.025 and 0.01

Critical point found (Excel) gives more info; critical point for a=0.02 is 2.35

- .: can reject Ho and accept Ha
- 3. Point Bi-Serial Correlation
 - · Correlation between a continuous RV and a dichotomous RV
 - Group X instances into 2 groups: where y=0 and where y=1
 - n₀ = no.of instances with x=0 and n₁ = no.of instances
 with x=1
 - · Pearson's Point Bi-serial correlation

$$r_{b} = \frac{\overline{x_{1}} - \overline{x_{0}}}{S_{x}} \sqrt{\frac{n_{0} n_{1}}{n(n-1)}}$$

 Ms Sandra Ruth, data scientist at Airmobile, is interested in finding the correlation between the average call duration and gender. The table provides the average call duration (measured in seconds) and gender of 30 customers of Airmobile. In the table, male is coded as 0 and Female is coded as 1. Calculate the point bi-serial correlation.

Gender	1	1	6	0	0	1	0	1	1	0
Call	448	335	210	382	407	231	359	287	288	347
Duration										
Gender	1	1	1	1	1	6	0	1	6	0
Call	408	382	303	201	447	439	383	277	279	213
Duration										
Gender	1	1	\bigcirc	1	1	0	1	0	1	0
Call	383	355	362	401	331	421	367	437	326	351
Duration										

$$\overline{X}_0 = 345.07$$
 $\overline{X}_1 = 339.412$ $\overline{X} = 345.33$

$$S_{x} = 71.7189$$
 $n_{0} = 13$ $n_{1} = 17$

$$r_{\rm b} = -0.0960$$

Y

.: Very low negative correlation

4. Phi Coefficient

- · Both RVs are binary
- · Contingency table

		Ny	Ny				
	,z	Noo	Not	Nox			
x	*						
	N×	N _{io}	Nn	NIX	© vibhas n	otes 20)21
		Νγο	NYI	N			

 N_{00} = Number of cases in the sample such that X = 0 and Y = 0 N_{01} = Number of cases in the sample such that X = 0 and Y = 1 N_{10} = Number of cases in the sample such that X = 1 and Y = 0 N_{11} = Number of cases in the sample such that X = 1 and Y = 1 N_{X0} = Number of cases in the sample such that X = 0 N_{X1} = Number of cases in the sample such that X = 1 N_{Y0} = Number of cases in the sample such that Y = 0 N_{Y1} = Number of cases in the sample such that Y = 1

$$\phi = \frac{N_{11} N_{00} - N_{10} N_{01}}{\sqrt{N_{x0} N_{x1} N_{y0} N_{y1}}}$$

Q: Joy Finance (JF) is a company that provides gold loans (in which gold is used as guarantee against the loan). Mr Georgekutty, Managing Director of JF, collected data to understand the relationship between loan default status (variable Y) and the marital status of the customer (variable X). Data is collected on past 40 loans and is shown in Table 8.8. Calculate the Phi- coefficient. In Table, Y = 0 implies non-defaulter, Y = 1 is defaulter, X = 0 is single, and X = 1 is married.

TABLE	8.8 Mar	ital status	s (0 = Sin)	gle, $1 = N$	/arried) v	versus loar	n status (O	= No def	ault, $1 = 0$)efault)
X	1	0	1	0	0	0	0	0	1	0
Y	0	1	0	1	0	0	0	1	1	1
X	0	1	1	0	0	1	0	0	0	1
γ	0	1	1	1	0	0	1	1	0	0
X	1	0	0	0	1	1	1	0	0	1
Y	0	0	0	1	0	0	0	0	0	0
X	1	0	0	0	1	0	1	0	1	1
Y	1	0	0	1	1	0	1	1	0	1

Contingency table

		Y		
		0	1	Total
X	0	13	10	23
	1	10	7	17
То	tal	23	17	40

$$\phi = \frac{N_{11} N_{00} - N_{10} N_{01}}{\sqrt{N_{x0} N_{x1} N_{y0} N_{y1}}} = \frac{7 \times 13 - 10 \times 10}{\sqrt{23 \times 17 \times 23 \times 17}} = -0.0230$$

Weak negative correlation

REGRESSION

- If there is a significant Linear Correlation between $RV_s \times \xi_s \gamma_s$ one of the 5 can be true
 - 1. Direct cause & effect relationship
 - 2. Reverse cause & effect relationship
 - 3. Maybe due to third variable
 - 4. Complex interactions of several variables
 - s. Coincidental

- Independent variable: explanatory variable
 Dependent variable: response variable
- · Regression: supervised learning
- · Does not capture causality

Dependent Variable	Independent Variable
Explained Variable	Explanatory variable
Regressand	Regressor
Predictand	Predictor
Endogenous Variable	Exogenous Variable
Controlled Variable	Control Variable
Target Variable	Stimulus Variable
Response Variable	Feature
Outcome Variable	

1. Simple Linear Regression - two variables

$$Y = \beta_0 + \beta_1 X_1 + \varepsilon$$

- 2. Multiple Linear Regression more than 1 independent variable

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_k X_k + \varepsilon$$

3. Non-linear Regression

$$Y = \beta_0 + \frac{1}{\beta_1 + \beta_2 \times_1} + \times_2^{P_3} + \varepsilon$$

Linear Regression

Linear relationship between dependent variables and regression coefficients

$$Y = \beta_1 + \beta_1 x_1 + \beta_2 x_2 x_1 + \beta_3 x_1^2 e^{1}$$

least squares approach used ٠

- 1. The regression model is linear in regression parameters.
- 2. The explanatory variable, *X*, is assumed to be non-stochastic (i.e., *X* is deterministic).
- 3. The conditional expected value of the residuals, $E(\varepsilon|X)$, is zero.
- 4. In case of time series data, residuals are uncorrelated, that is, $Cov(\varepsilon_i, \varepsilon_i) = 0$ for all $i \neq j$.
- 5. The residuals, ε , follow a normal distribution.
- 6. The variance of the residuals, $Var(\mathcal{E}|X)$, is constant for all values of X. When the variance of the residuals is constant for different values of X, it is called homoscedasticity. A non-constant variance of residuals is called heteroscedasticity.

Functional Form of Relationenip

FIGURE 9.3 Linear relationship between X, and Y,.

FIGURE 9.4 Log-linear relationship between X, and Y,

Ordinary Least Squares (OLS) Estimation

· Minimum sum of squared error CSSE)

2

SSE =
$$\sum_{i=1}^{n} \epsilon_i^2 = \sum_{i=1}^{n} (Y_i - \beta_0 - \beta_i x_i)^2$$

11

· Partial derivatives

$$\frac{\partial SSE}{\partial \beta_0} = \sum_{i=1}^{2} -2(Y_i - \beta_0 - \beta_i x_i) = 0$$

$$2(n\beta_0 + \beta_1 \underbrace{\overset{n}{\underset{i=1}{\sum}} x_i - \underbrace{\overset{n}{\underset{i=1}{\sum}} y_i}) = 0$$

$$\frac{\partial SSE}{\partial \beta_1} = \sum_{i=1}^{\infty} -2(Y_i - \beta_0 - \beta_1 x_i) x_i = 0$$

$$= -2 \sum_{i=1}^{\infty} (x_i Y_i - \beta_0 x_i - \beta_1 x_i^2) = 0$$

• Line

 $\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}$

https://statisticsbyjim.com/regression/ols-linear-regression-assumptions/ #:~:text=The%20Gauss%2DMarkov%20theorem%20states%20that%20if%20your%20linear%20regressi on.of%20all%20possible%20linear%20estimators

· OLS provides Best Linear Unbiased Estimate (BLUE)

Steps : Framework for SLR Model Development

- Regression model dignostics to be performed before applying
 a model
- · Assumptions should not be violated

Step 8:

- · Model must be validated against validation dataset
- · Prevent overfitting

S:Table below provides the salary of 50 graduating MBA students of a Business School in 2016 and their corresponding percentage marks in grade 10. Develop a linear regression model by estimating the model parameters.

о.	Percentage in Grade 10	Salary	S. No.	Percentage in Grade 10	Salary
Į	62	270000	26	64.6	250000
i.	76.33	200000	27	50	180000
	72	240000	28	74	218000
	60	250000	29	58	360000
1	61	180000	30	67	150000
	55	300000	31	75	250000
	70	260000	32	60	200000
	68	235000	33	55	300000
	82.8	425000	34	78	330000
1	59	240000	35	50.08	265000
	58	250000	36	56	340000
	60	180000	37	68	177600
}	66	428000	38	52	236000
Ì	83	450000	39	54	265000
ł.	68	300000	40	52	200000
	37.33	240000	41	76	393000
	79	252000	42	64.8	360000
1	68.4	280000	43	74.4	300000
j	70	231000	44	74.5	250000
i	59	224000	45	73.5	360000
(63	120000	46	57.58	180000
	50	260000	47	68	180000
1	69	300000	48	69	270000
	52	120000	49	66	© vibhas notes 2021
	49	120000	50	60.8	300000

Let
$$\chi = class \ 10 \ percent$$

 $y = salary$
 $\hat{\beta}_0 = 61555.3553$
 $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 \chi$
 $\hat{\beta}_1 = 3076.1774$
 $\hat{y} = 61555.2553 + 3076.1774$

Interpretation of SLR

- · If functional form is Y = $\hat{\beta}_0 + \hat{\beta}_1 X$
- $\longrightarrow \hat{\beta}_1 : \frac{\partial Y}{\partial x} : partial derivative of Y wrt X$

$$\longrightarrow \hat{\beta}_0$$
 : E(Y|X=0) : expected value of Y when X=0

Validation of SLR Model

I

- · Ensure validity & goodness of fit
- Following measures
 - 1. Prediction accuracy
 - 2. Residual analysis
 - 3. Coefficient of determination (R²)
 - Hypothesis test for regression coefficient (β,)
 Analysis of variance

 - 6. Outier analysis

RESIDUAL ANALYSIS

٠

Eg: lemonade stand dataset

http://docs.statwing.com/interpreting-residual-plots-to-improve-your-regression/#y-unbalanced-header

Temperature (Celsius)	Revenue
28.2	\$44
21.4	\$23
32.9	\$43
24.0	\$30
etc.	etc.

· Regression equation

Revenue = 2.7 × Temperature - 35

Residual = Observed - Predicted

· Accuracy with observed vs Predicted for 2 diff datasets

· Residual plot

· For good linear models, the residual plots are evenly distributed with no clear pattern

- · As shown above, the four plots
 - Are symmetrically distributed, tending to cluster towards the middle of the plot
 - Are clustered towards lower single digits of the y-axis (close to y=0)
 - Do not show any clear patterns
- Models that could be improved show patterns in the residual plot, indicating that the particular repression chosen is not the best

- · As shown above, the four plots
 - Arren't evenly distributed
 - Have an outlier
 - Have a clear shape to them

HOMOSCE DASTICITY

- · A good regression model is assumed to be homoscedastic
- In other words, variance of residuals is constant across different values of x
- · Variance of reciduals is independent of X
- · If assumption is not met, the hypothesis tests become unreliable

FIGURE 9.7 Funnel shape in the standardized residual plot indicates heteroscedasticity.

Residual Analysis

- Check if assumptions of regression model satisfied
 - 1. Residuals $(\gamma_i \hat{\gamma}_i)$ are normally distributed
 - 2. Variance of residuals is constant homoscedasticity
 - 3. The functional form of regression is correct
 - 4. There are not too many outliers

1. Normal Distribution of Residuals

- · Using P-P (Probability-Probability) plot
- · Compares cdf of the two probability distributions with each other
- · Compare if residuals of testing variables matches with residuals of normal distribution

(page 18 of notes)

FIGURE 9.6 Residual plot (P - P Plot) of the regression model $Y = \beta_a + \beta_c$ age (Example 9.2).

2. Variance of Residuals is constant

Fix 1: transforming the variable

- · common: transform one into log form
- · boal: to get bell-shaped curve

http://docs.statwing.com/interpreting-residual-plots-to-improve-your-regression/#y-unbalanced-header

We've colored a couple outlying datapoints red and orange so you can see how their distance from the rest of the data changes after we transform the data.

жê

Predicted

Predicted

- Observations whose values show a large deviation from mean value — outliers
- · can significantly affect values of regression@ coefficients 2021

FIGURE 9.9 Influence of outliers on regression coefficients.

Effect of Influential Points

Regression vs Correlation

•

- · Both: strength of relationship
- · Correlation: commutative; assumes both variables to be random
- Regression: what is the change in Y for a unit change in X

https://www.graphpad.com/support/faq/what-is-the-difference-between-correlation-and-linear-regression/

Second Second

correlation (interchangeable)

8: You want to predict blood pressure for different doses of a drug

regression (prediction)

A clinical trial has multiple endpoints and you want to know which pair of endpoints has the strongest linear relationship

correlation Cscatterplot/correlation matrix)

A: You want to know how much the response (Y) changes for every one unit increase in (X)

```
regression (slope)
```

Coefficient of Determination (R²)

· SLR : explained variation & unexplained variation

• Total variation = difference in Y_i and \overline{Y}

Variation Type	Measure	Description
Total Variation (SST)	$(Y_i - \overline{Y})^2$	Total variation is the difference between the actual value and the mean value
Variation explained by the model (SSR)	$(\hat{\gamma}_i - \overline{\gamma})^2$	Variation explained by the model is the difference between the estimated value of Y; and the mean value of Y
Variation not explained by model (SSE)	$(Y_i - \hat{Y}_i)^2$	Variation not explained by the model is the difference between the actual value and the predicted value of Y _i (error in prediction)

- · SST: sum of squares of total variation
- · SSR: sum of squares of variation explained by the regression model
- · SSE: sum of squares of errors or unexplained variation

$$R^2 = \frac{\text{Explained variation}}{\text{Total variation}} = \frac{\text{SSR}}{\text{SST}} = \frac{(\hat{Y}_i - \bar{Y})^2}{(Y_i - \bar{Y})^2}$$

$$SSR = SST - SSE$$

$$R^{2} = 1 - \frac{SSE}{SST} = 1 - \frac{(\hat{Y}_{i} - Y_{i})^{2}}{(Y_{i} - \overline{Y})^{2}}$$

min value of r²= R² given & can be determined using
 F-statistic

Spurious Regression

Year	Number of Facebook users in millions (X)	Number of people who died of helium poisoning in UK (Y)
2004	1	2
2005	6	2
2006	12	2
2007	58	2
2008	145	11
2009	360	21
2010	608	31
2011	845	40

The R-square value for regression model between the number of deaths due to helium poisoning in UK and the number of Facebook users is 0.9928. That is, 99.28% variation in the number of deaths due to helium poisoning in UK is explained by the number of Facebook users.

Hupothesis Test for Regression Coefficient (t-test)

· Regression coefficient = β, (slope)

$$B_{1} = \frac{\sum_{i=1}^{n} k_{i} Y_{i}}{\sum_{i=1}^{n} k_{i}^{2}}$$

k; = (X; -X) can be treated as constant (non-stochastic)

• If $\beta_1 = 0$, no statistically linear relationship blw $x \ge y$

- · B, assumed to follow normal distribution
- · Sampling distribution of β, follows t-distribution with n-1 dof
- Test if $\beta_1 = 0$ or not

 $H_0: \beta_1 = 0 \quad (no \ relationship \ b|w \ x \ y \ Y)$ $H_a: \beta_1 \neq 0 \quad (there \ is \ a \ relationship \ b|w \ x \ y \ Y)$

- Standard error of a statistic is the standard deviation of its sampling distribution
- · SE of estimate: SD of sampling distribution of residuals

- If a sampled to calculated value of $\hat{\beta}_{1} = 1$, how do we know if it is far enough from 0 to be statistically significant?
 - If $SE(\hat{\beta}_i) = 0.2$, then $\hat{\beta}_i = 0.2 \times 5 = 5$ standard errors away from D
 - If SE(Bi) = 2, then Bi = 2×0.5 = 0.5 standard errors away from 0
- · How do we know no. of standard errors away from o that is enough to classify as statistically significant?
 - Critical value: cutoff no. of SEs needed for sample coefficient $\hat{\beta}$, to be statistically significant
- · Equation for SE of estimates or SE of residuals

ss of residuals

Se = $\frac{\sum_{i=1}^{n-2} (Y_i - \hat{Y}_i)^2}{n-2} = 2 \text{ dof lost from } n$ samples due to Bo & B,

· Standard error of $\hat{\beta}_1$ (regression coefficient)

$$S_e(\hat{\beta}_i) = \frac{S_e}{\sqrt{\sum_{i=1}^{7} (X_i - \overline{X}_i)^2}}$$

Hypothesis Test

- Ho: B1 =0 Ha: B1 = 0
- · t-statistic

$$t = \frac{\hat{\beta}_{1} - \beta_{1}}{S_{e}(\hat{\beta}_{1})} = \frac{\hat{\beta}_{1} - 0}{S_{e}(\hat{\beta}_{1})}$$

Test for Overall Model: Analysis of Variance (F-test)

- · Analysis of Variance CANOVA) test if statistically significant
- · For SLR, Ho and Ha of F-test same as t-test (same p-value)
 - Ho: all regression coefficients are O Ha: not all regression coefficients are D
- · F statistic given by

F	statis	tic	= (MSI	R	:	_	S۶	R	_
			1	MSE	ε		(<u>`ss</u>	E	
								<u>_</u>	2	

· check p-value from table

 $Z = \frac{\hat{Y}_i - \hat{Y}}{\nabla y}$

Distance Measures

1. Mahalanobis Distance

- · Distance between Xi and centroid of Y
- If distance value > χ^2 test critical value : outlier

· (2-11) E-1(x-11)

 Very nice vid & channel: <u>https://youtu.be/xc_X9GFVuVU</u> Cexplains influence, leverage?

2. Cook's Distance

 How much ŷ changes when particular X; excluded from sample for estimation of regression parameters

$$D_{i} = \underbrace{\underbrace{S}}_{j} \left(\underbrace{Y}_{j} - \widehat{Y}_{j(i)} \right)^{2}$$

$$(w \neq i) \quad MSE$$

where D_i is the Cook's distance measure for i^{th} observation, k is the number of predictors in the model, \hat{Y}_j is the predicted value of j^{th} observation including i^{th} observation, $\hat{Y}_{j(i)}$ is the predicted value of j^{th} observation after excluding i^{th} observation from the sample, MSE is the Mean–Squared–Error. A Cook's distance value of more than 1 indicates highly influential observation.

· How much predicted value changes without a particular observation

3. Leverage Value

 Influence of an observation on overall fit of regression function

$$h_{i} = \frac{1}{n} + \frac{(x_{i} - \overline{x})^{2}}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}$$

4. DFFit and DFBeta

- · DFFit: change in \widehat{Y}_i when case i removed from the dataset
- DFBeta: change in regression coefficient values when obs i removed from dataset

Sum of Squared Errors

$$\hat{\hat{S}}(\hat{Y}_{i}-\bar{Y})$$

· Repression model: minimise SSE

$$\beta_{1} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})(Y_{i} - \overline{Y})}{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})Y_{i}}{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}} - \frac{\overline{X}\sum_{i=1}^{n} (Y_{i} - \overline{Y})}{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})Y_{i}}{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}$$

GRADIENT DESCENT

· Hypothesis h for SLR

$$h_{\theta} = \theta_0 + \theta_1 x$$

- · Find best fit line Calternative to OLS)
- · Theory in MI

FIGURE 4.4

Error of different hypotheses. For a linear unit with two weights, the hypothesis space H is the w_0, w_1 plane. The vertical axis indicates the error of the corresponding weight vector hypothesis, relative to a fixed set of training examples. The arrow shows the negated gradient at one particular point, indicating the direction in the w_0, w_1 plane producing steepest descent along the error surface.

- · Apply GD to y=m2+c
- · Initially, let m=0 and c=0 cusually we never start with o but for SLR it is okay)
- · Let LR = L (like 0.0001)
- · let E=loss function = 1 SSE = 1 S (y-yi)

· Calculate <u>DE</u> and plug in x,y, m and c to viBhasildies 2021 Dm

 $D_{m} = \frac{\partial E}{\partial m} = \frac{1}{n} \sum_{i=0}^{n} a(\bar{y} - (m\chi_{i}+c))(-\chi_{i})$

• Calculate $\frac{\partial E}{\partial c} = Dc$

$$D_{c} = \frac{1}{n} \sum_{i=0}^{\infty} (y_{i} - y_{i})$$

· Update values of m and c using Dm 4 Dc

$$m = m - L \times D_m$$
$$C = C - L \times D_e$$

Low Learning Rate Decent learning Rate High Learning Rate J(θ), loss $\theta,$ parameter $\theta,$ $\theta,$ parameter $\theta,$ $\theta,$ $\theta,$

Multiple Linear Regression

· Functional form (can contain bix, bix, z, etc.)

 $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \dots + \beta_k X_{ki} + \varepsilon_i$

· Matrix Representation of terms

· Matrix Representation of functional form

$$\begin{bmatrix} y_1 \\ y_2 \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & x_{11} & x_{21} & x_{k1} \\ 1 & x_{12} & x_{22} & x_{k2} \\ & & & & \\ 1 & x_{1n} & x_{2n} & x_{kn} \end{bmatrix} \bullet \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_1 \\ \beta_k \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_n \end{bmatrix}$$

OLS Estimation

Assumptions

- 1. The regression model is linear in parameter.
- 2. The explanatory variable, X_p is assumed to be non-stochastic (that is, X_j is deterministic).
- 3. The conditional expected value of the residuals, $E(\varepsilon_i|X_i)$, is zero.
- 4. In a time series data, residuals are uncorrelated, that is, $Cov(\mathcal{E}_i, \mathcal{E}_j) = 0$ for all $i \neq j$.
- 5. The residuals, ε_{p} , follow a normal distribution.
- 6. The variance of the residuals, $Var(\varepsilon_i|X_i)$, is constant for all values of X_i . When the variance of the residuals is constant for different values of X_i , it is called **homoscedasticity**. A non-constant variance of residuals is called **heteroscedasticity**.
- There is no high correlation between independent variables in the model (called multicollinearity). Multi-collinearity can destabilize the model and can result in incorrect estimation of the regression parameters.

Framework for Building MLR

Estimate B

· OLS provides Best Linear Unbiased Estimate (BLUE)

T١

· OLS fits polygon such that SBE is minimum

<u>Model Diagnostics</u>

- F-text overall significance of model
 t-text significance of each variable
- · Presence of multi-colinearity: Variance Inflation Factor (VIF) (to drop attributes)
- · Adjusted R² for MLR as R² normally increases with dimensionality

$$\sum_{i=1}^{k} \frac{1}{k} \frac{Y_i - \hat{Y}_i}{Y_i} \times 100\%$$

K= no. of validation cases

· RMS error

$$\sqrt{\sum_{i=1}^{k} \frac{1}{k} (Y_i - \hat{Y}_i)^2}$$

Part (Semi-Partial) Correlation and Regression Model Building

- Increase in R^2 when a new variable is added is given by the square of the semi-partial correlation of the newly added variable with dependent variable Y
- · Model with two independent variables

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon_i$$

1. Partial Correlation

- · correlation between $X_1 \in Y$ when X_2 is constant
- · Partial correlation of X, & Y when X2 is constant

$$r_{YX_1,X_2} = \frac{r_{YX_1} - r_{YX_2} \times r_{X_1X_2}}{\sqrt{(1 - r_{YX_2}^2) \times (1 - r_{X_1X_2}^2)}} = \frac{r_{YX_1} - r_{YX_2}}{\sqrt{(1 - r_{YX_2}^2) \times (1 - r_{X_1X_2}^2)}}$$

2. Semi-Partial Correlation

- · Also called part correlation
- Relationship between Y & X, when influence of X₂ removed only from X, and not from Y
- · Removing c and E from X, in the Venn diagram below

· when influence of x2 removed from X,

$$sr_{YX_1,X_2} = \frac{r_{YX_1} - r_{YX_2}r_{X_1X_2}}{\sqrt{(1 - r_{X_1X_2}^2)}}$$

S: The cumulative television rating points (CTRP) of a television program, money spent on promotion (denoted as P), and the advertisement revenue (in Indian rupees denoted as R) generated over one-month period for 38 different television programs is provided in Table 10.1. Develop a multiple linear regression model to understand the relationship between the advertisement revenue (R) generated as response variable and promotions (P) and CTRP as predictors.

Serial	CTRP	Р	R	Serial	CTRP	Р	R
1	133	111600	1197576	20	156	104400	1326360
2	111	104400	1053648	21	119	136800	1162596
3	129	97200	1124172	22	125	115200	1195116
4	117	79200	987144	23	130	115200	1134768
5	130	126000	1283616	24	123	151200	1269024
6	154	108000	1295100	25	128	97200	1118688
7	149	147600	1407444	26	97	122400	904776
8	90	104400	922416	27	124	208800	1357644
9	118	169200	1272012	28	138	93600	1027308
10	131	75600	1064856	29	137	115200	1181976
11	141	133200	1269960	30	129	118800	1221636
12	119	133200	1064760	31	97	129600	1060452
13	115	176400	1207488	32	133	100800	1229028
14	102	180000	1186284	33	145	147600	1406196
15	129	133200	1231464	34	149	126000	1293936
16	144	147600	1296708	35	122	108000	1056384
17	153	122400	1320648	36	120	194400	1415316
18	96	158400	1102704	37	128	176400	1338060
19	104	165600	1184316	38	117	172800	1457400

$$R = \beta_0 + \beta_1 CTRP + \beta_2 P$$

R= 41008.840 + 5931.850 CTRP + 3.136 P

Visualisation of MLR

Partial Repression Coefficients

1. R and CTRP

$$R = \alpha_0 + \alpha_1 \times CTRP + \varepsilon_1$$

· Independent var decided from domain knowledge

TABLE 1	0.4 Mod	del summary		
Model	R	R-Square	Adjusted <i>R</i> -Square	Std. Error of the Estimate
1	0.564	0.318	0.299	114293.708

	Madal	Unstandardized Coefficients		nts Standardized Coefficients		Cia
	Model	В	Std. Error	Beta	t	Sig.
	(Constant)	625763.106	141522.635		4.422	0.000
£	CTRP	4569.214	1114.912	0.564	4.09©	vilolinas notes 2021

2. P and CTRP

3.

$P = \delta_0 + \delta_1 \times CTRP + \epsilon_2$

lodel	R	R-Square	Adjusted	R-Square	Std. Error o	f the Estim	late	
1	0.228	0.052	0.0	26	3163	5.39950		
ABLE 10.	7 Coefficie	ents						
odel		Unstandardiz	ed Coefficients	Standardi	zed Coefficients	- t	Sig.	
odei	20	В	Std. Error		Beta		sig.	
((Constant)	186456.659	39172.105			4.760	0.000	
(CTRP	-434.495	308.597	-	-0.228	-1.408	0.168	
an	d E ₂							
un	u cz	•						
		$\varepsilon_1 = \eta$	。+ η × ε	in + E.				
		- 1		-1 -3				
TABLE	10.8 Model	summary						
Model	R	<i>R</i> -Square	Adjusted	<i>R</i> -Square	Std. Error of t	he Estimate		
1	0.868	0.754	0.7	47	56743.4	16998		
TABLE 1	0.9 Coeffic	ients						
Model		<u>1</u>	Unstandardized	Coefficients	Standardized Co	oefficients	t	5
			В	Std. Error	Beta			
1	(Constant)		-1.614E-010	9205.006			0.000	1
	Unstandard	ized Residual	3.136	0.299	0.868	ka -	10.491	0

Summary

TABLE 10.10 Model development i	n multiple linear regression	
Model	Estimated Parameters Values	Model Interpretation
$R = \beta_0 + \beta_1 \times CTRP + \beta_2 \times P + \varepsilon$	$R = 41008.84 + 5931.85 CTRP + 3.136 \times P$	Variation in R explained by CTRP and P
$R = \alpha_0 + \alpha_1 \times CTRP + \varepsilon_1$	$R = 625763.106 + 4569.214 \times CTRP$	Variation in R explained by CTRP
$P = \delta_0 + \delta_1 \times CTRP + \varepsilon_2$	$P = 186456.659 - 434.495 \times CTRP$	Variation in P explained by CTRP
$\boldsymbol{\varepsilon}_{1} = \boldsymbol{\eta}_{0} + \boldsymbol{\eta}_{1} \times \boldsymbol{\varepsilon}_{2}$	$\mathcal{E}_1 = 3.136 \times \mathcal{E}_2$ (The value of η_1 is same as that of β_2)	\mathcal{E}_1 is variation in <i>R</i> not explained by <i>CTRP</i> \mathcal{E}_2 is variation in <i>P</i> not explained by <i>CTRP</i>

 Every new variable added to the model is partialled out from other independent variables and regressed with the partialled out dependent variable

STANDARDISED REGRESSION COEFFICIENTS

- · Regression model built on standardised dependent & independent variables
- · Standardised Beta

$$\hat{\beta} \times \frac{S_{x_i}}{S_{y_i}}$$

 Interpretation: for one SD change in explanatory (X) variable, no. of SDs response (Y) variable changes by

TABI	LE 10.11 Stan	dardized regress	ion coefficients			SDs (CTRP, 0.73
Mod		Unstandardiz	ed Coefficients	Standardized Coefficients	1.	Ci.e.	Y
MOG	e	В	Std. Error	Beta	T	Sig.	
	(Constant)	41008.840	90958.920		0.451	0.655	
1	CTRP	5931.850	576.622	0.732	10.287	0.000	
	Р	3.136	0.303	0.736	_G yipt	nasnot	es 2021

One SD change

Regression Models with Qualitative Variables

- · Preprocess categorical vars using dummy variables
- She data in Table 10.12 provides salary and educational qualifications of 30 randomly chosen people in Bangalore.
 Build a regression model to establish the relationship between salary earned and their educational qualifications.

TABLE	10.12 Educat	tion versus	salary					
S. No.	Education ^a	Salary	S. No.	Education	Salary	S. No.	Education	Salary
1	1	9800	11	2	17200	21	3	21000
2	1	10200	12	2	17600	22	3	19400
3	1	14 200	13	2	17650	23	3	18800
4	1	21000	14	2	19600	24	3	21000
5	1	16500	15	2	16700	25	4	6500
6	1	19210	16	2	16700	26	4	7200
7	1	9700	17	2	17500	27	4	7700
8	1	11000	18	2	15000	28	4	5600
9	1	7800	19	3	18500	29	4	8000
10	1	8800	20	3	19700	30	4	9300

^a 1 – High school, 2 – Under-graduate, 3 – Post-graduate and 4 – None.

Use 3 dummy variables and one-not encoding

TABLE 10.13	Pre-processed data (sample)	
--------------------	-----------------------------	--

0	F 4		Pre-Processed data	Pre-Processed data		
Observation	Education	High School (HS)	Under-Graduate (UG)	Post-Graduate (PG)	- Salary	
1	1	1	0	0	9800	
11	2	0	1	0	17200	
19	3	0	0	1	18500	
27	4	0	0	⁰ © vibł	nas 700tes 2021	

Y= Bo + B1 × HS + B2× UG + B3× PG

· Base category: 000 for None

Мо	del	Unstanda Coeffic		Standardized Coefficients	t-value	<i>p</i> -value
		В	Std. Error	Beta	2	
	(Constant)	7383.333	1184.793		6.232	0.000
	High-School (<i>HS</i>)	5437.667	1498.658	0.505	3.628	0.001
1	Under-Graduate (UG)	9860.417	1567.334	0.858	6.291	0.000
	Post-Graduate (PG)	12350.000	1675.550	0.972	7.371	0.000

Y = 7383.333 + 5437.667 HS +9860.41706 +12350.000 PG

Interaction Variables

- · Product of two variables (eg: X, X2)
- · Usually product of categorical and continuous

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2$$

θ: The data in Table 10.15 provides salary, gender, and work experience (WE) of 30 workers in a firm. In Table 10.15, gender = 1 denotes female and 0 denotes male and WE is the work experience in number of years. Build a regression model by including an interaction variable between gender and work experience. Discuss the insights based on the regression output.

S. No.	Gender	WE	Salary	S. No.	Gender	WE	Salary
1	1	2	6800	16	0	2	22100
2	1	3	8700	17	0	1	20200
3	1	1	9700	18	0	1	17700
4	1	3	9500	19	0	6	34700
5	1	4	10100	20	0	7	38600
6	1	6	9800	21	0	7	39900
7	0	2	14500	22	0	7	38300
8	0	3	19100	23	0	3	26900
9	0	4	18600	24	0	4	31800
10	0	2	14200	25	1	5	8000
11	0	4	28000	26	1	5	8700
12	0	3	25700	27	1	3	6200
13	0	1	20350	28	1	3	4100
14	0	4	30400	29	1	2	5000
15	0	1	19400	30	1	1	4800

$Y = \beta_0 + \beta_1 \times Gender + \beta_2 \times WE + \beta_3 \times Gender \times WE$

Model Unstandar				Standardized Coefficients		C 1
11100	aer	В	Std. Error	Beta	ť	Sig.
	(Constant)	13443.895	1539.893		8.730	0.000
1	Gender	-7757.751	2717.884	-0.348	-2.854	0.008
1	WE	3523.547	383.643	0.603	9.184	0.000
	Gender*WE	-2913.908	744.214	-0.487	-3.915	0.001

Y = 13443.895 - 7757.751 × Gender + 3523.547 WE - 2913.908 × WEX Gender

Gender	female = 1	hender 1 (female),
	male = 0	salary 1 by 7757.751
		© vibhas notes 2021

Regression Model Diagnostics

- F-text overall significance of model
 t-text significance of each variable
- · Presence of multi-colinearity: Variance Inflation Factor (VIF) (to drop attributes)
- · Mean abcolute percentage error

$$\sum_{i=1}^{k} \frac{1}{k} \frac{Y_i - \hat{Y}_i}{Y_i} \times 100^{1/2}$$

k= no.of validation cases

· RMS error

 $\sqrt{\frac{k}{k}} \frac{1}{k} (Y_i - \hat{Y}_i)^2$

Adjusted R²

$$R^2 = 1 - \frac{SSE}{SST}$$

Adjusted
$$R^2 = 1 - \frac{SSE}{(n-k-1)}$$
 independent vars
SST/(n-1)

t-Test - Statistical Significance of Individual Variables

· Estimate of $\hat{\beta}$ (pg 42)

- Residuals follow normal distribution cassumption for MLR)
 ⇒ Y follows ND
 ⇒ β follows ND
- · SD of β estimated from the sample \Rightarrow t-test used
- · Hypothesis test

Ho: no relationship between Xi and Y Ha: there is a relationship between Xi and Y

· Or

Ho:
$$\beta_i = 0$$

Ha = $\beta_i \neq 0$

$$t = \frac{\hat{\beta}_i - 0}{S_e(\hat{\beta}_i)} = \frac{\hat{\beta}_i}{S_e(\hat{\beta}_i)}$$

F-test - Statistical Significance of Overall Model

- · check statistical significance of overall model with X
- · Conduct residual analysis (pg 20)
- Check for presence of multi-colinearity (strong correlation blw independent variables)
- · Hypothesis test

$$H_0: \beta_1 = \beta_2 = \cdots = \beta_R = 0$$

 $H_a: not all \beta_i's are 0$

· F statistic

Partial F-Test

- Assume for dataset of N observations, a full model (k ind. vars) and a reduced model (r ind. vars) are defined (r < k)
- · Full model

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k$$

· Reduced model

$$Y = \alpha_0 + \alpha_1 X_1 + \alpha_2 X_2 + \cdots + \alpha_r X_r$$

- Objective of Partial F-test: check if additional variables
 X_{r+1}, X_{r+2}, ..., X_k are statistically significant
- · Hypothesis test

$$H_0: \beta_{r+1} = \beta_{r+2} = \cdots = \beta_{k} = 0$$

· Partial F statistic

Partial
$$F = \left(\frac{(SSE_R - SSE_F)/(k-r)}{MSE_F}\right)$$

 $\begin{array}{rcl} SSE_{R}: & SSE & \text{in reduced model} \\ SSE_{F}: & SSE & \text{in full model} \\ MSE_{F}: & MSE & \text{in full model} \end{array} \end{array} \text{ Partial } F = \frac{\left(R_{\text{full}}^{2} - R_{\text{reduced}}^{2}\right) / (k-r)}{\left(1 - R_{\text{full}}^{2}\right) / (N-k-1)} \end{array}$

Variance Inflation Factor

· Extent of multicolinearity

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2$$

· Repression model b/w X1&X2

$$X_1 = \alpha_0 + \alpha_1 X_2$$

· Variance inflation factor

$$VIF = \underbrace{I}_{I-R_{12}} \underbrace{(I-R_{12}) \cdot \text{tolerance}}_{\text{@ vibhas notes 2021}}$$

- Tolerance : $1 R_{12}^2$
- · In t-test, t-statistic $\hat{\beta}$ may be deflated due to collinearity $Se(\hat{\beta})$
- · Se (B) inflated by VVIF, or t-statistic deflated by VVIF
- · Actual t-value given as

$$t_{actual} = \frac{\hat{\beta}}{S_e(\hat{\beta})} \times \sqrt{VIF}$$

Handling Multi-Collinearity

- · PCA creates orthogonal components
- · Advanced models: Ridge Regression, LASSO Regression

Auto-Correlation

· Time-series data

$$Y_t = \beta_0 + \beta_1 X_t + \mathcal{E}_t$$

- · Read TI 10.15 for explanation
- · Under-estimation of p-value
- Presence of auto-correlation determined from Durbin-Watson Test

Durbin-Watson Test

- · Let ρ be correlation between \mathcal{E}_{t} and \mathcal{E}_{t-1} (Pearson's)
- · Hypothesis test
 - Ho: p=0 Ha: P=0
- · DW statistic

need not memorize

- · D lies between 0 & 4
- · Critical values: D, and Du
 - 1. If $D < D_r$, then the errors are positively correlated.
 - 2. If $D > D_1$, then there is no evidence for positive auto-correlation.
 - 3. If $D_1 < D < D_1$, the Durbin–Watson test is inconclusive.
 - 4. If $(4 D) < D_i$, then errors are negatively correlated.
 - 5. If $(4 D) > D_{U}$, there is no evidence for negative auto-correlation.
 - 6. If $D_L < (4 D) < D_U$, the test is inconclusive.

Distance Measures

1. Mahalanobis Distance

- · Distance between Xi and centroid of Y
- · If distance value > χ^2 test critical value : outlier
- <u>https://youtu.be/3ldvol8O9hU</u> (کوم 36)

$$\mathcal{D}_{\mathsf{M}}(\mathsf{X}_i) = \left((\mathsf{X}_i - \mu_i)^T S^{-1} (\mathsf{X}_i - \mu_i) \right)$$

- · Takes spread into account (S⁻¹: covariance matrix)
- · Helps find outliers

2. Cook's Distance

· Measures change in B when a sample is left out

$$D_{i} = (\hat{Y}_{j} - \hat{Y}_{j(i)})^{T} (\hat{Y}_{j} - \hat{Y}_{j(i)})$$

$$(k+i) \times MSE$$

3. Leverage Value

· Influence of an observation on overall fit

$$h_i = [H_{ii}] = X (X^T X)^T X^T$$

hi = <u>Mahalanobis</u> Dist² + <u>1</u> N-1 N

4. DFFit and DFBeta

- DFFit: diff in fitted value when observation is removed
- · SDFFit: standardized DFFit

- · $\hat{y_i}$: prediction of ith value, including ith observation
- · $\hat{y}_{i(i)}$: prediction of ith value, excluding ith observation
- · SDFFit

SDFFit =
$$\frac{\hat{y}_i - \hat{y}_{ici}}{Se^{(i)}\sqrt{h_i}}$$

 $S_e(i)$ is the standard error of estimate of the model after removing *i*th observation and h_i is the *i*th diagonal element in the hat matrix. The threshold for DFFIT is defined using **Standardized DFFIT** (SDFFIT). The absolute value of SDFFIT should be less than $2\sqrt{(k+1)/N}$.

DFBeta

•

.

DFBeta;
$$(j) = \hat{\beta}_j - \hat{\beta}_j c_i$$

where DFBETA_{*i*}(*j*) is the change in the regression coefficient for independent variable *j* when observation *i* is excluded. $\hat{\beta}_{j}$ is the estimated value of *j*th regression coefficient including *i*th observation, $\hat{\beta}_{j(i)}$ is the estimated value of *j*th regression coefficient after excluding *i*th observation from the sample.

SDFBeta

SDFBeta; (j) =
$$\hat{\beta}_{j} - \hat{\beta}_{j(i)}$$

Se $(\hat{\beta}_{j(i)})$

Variable Selection in Regression Model Building

(a) Forward Selection

- · K independent variables in dataset
- · One variable added at every step

- stap 1

- · start with 0 variables
- · calculate correlation by all X's and Y

- stap a

· Develop SLR by adding variable with highest p

$$Y = \beta_0 + \beta_1 X_i$$

- · Create new model Y= do + d, Xi + d2 Xj (j = i) (there are k-1 models)
- · Conduct partial F-test to check if X; is statistically significant at d

- stap 3

Add Xj from step 2 with smallest p-value based on partial
 F-test (if p-value < ~)

- stap 4

Repeat step 3 until smallest p-value is > ~ or all variables
 are exhausted
 © vibhas notes 2021

(b) Backward Selection

· Remove one variable at a time using F-test

- stap 1

· Assume model is MLR with a independent variables (full model)

$$/=\beta_0+\beta_1X_1+\beta_2X_2+\ldots+\beta_nX_n$$

- stap 2

- Remove one variable X; from the model (there will be k such models)
- Perform partial F-test between the models in step 1 and step 2

- step 3

· Remove the variable with largest p-value if p-value > ~

- Stap 4

· Repeat until largest p-value < ~ ~ no variables in model

(c) Stepwise Repression

- · Combination of forward and backward
- · Entering criteria (2) based on smallest p-value of partial F-test
- · Exiting criteria (B) based on largest p-value with as fidtes 2021

TABLE 1	0.21 Varia	bles entered/	removed						
Model	Variables Entered	Variables Removed	Method						
1	Р		Stepwise (Criteria: Probability-of- <i>F</i> -to-enter < = 0.050, Probability-of- <i>F</i> -to-remove > = 0.100).						
2	CTRP		Stepwise (Criteria: Probability-of- F -to-enter $< = 0.050$, Probability-of- F -to-remove $> = 0.100$).						

Avoiding Overfitting - Mallow's Cp

 $C_{p} = \left(\frac{SSE_{p}}{MSE_{full}}\right) - (N-A_{p})$

where SSE_p is the sum of squared errors with p parameters in the model (including constant), MSE_{full} is the mean squared error with all variables in the model, N is the number of observations, p is the number of parameters in the regression model including constant.

Transformations

- · Deriving new dependent/independent variables to identify correct functional form of LR
- · Transformation helps with
 - 1. Poor fit (low R2)
 - 2. Pattern in residual analysis (pg 20)
 - 3. Residuals do not follow normal dist
 - 4. Residuals are not homoscedastic

δ: Table 10.28 shows the data on revenue generated (in million of rupees) from a product and the promotion expenses (in million of rupees). Develop an appropriate regression model.

S. No.	Revenue in Millions	Promotion Expenses	S. No.	Revenue in Millions	Promotion Expenses
1	5	1	13	16	7
2	6	1.8	14	17	8.1
3	6.5	1.6	15	18	8
4	7	1.7	16	18	10
5	7.5	2	17	18.5	8
6	8	2	18	21	12.7
7	10	2.3	19	20	12
8	10.8	2.8	20	22	15
9	12	3.5	21	23	14.4
10	13	3.3	22	7.1	1
11	15.5	4.8	23	10.5	2.1
12	15	5	24	15.8	4.75

Y = Revenue in Millions

X = Promotion Expenses

•	Does	not	look	lineaí.	Consider
---	------	-----	------	---------	----------

· Model summary

TABLE 10.29 Model summary								
Model	R	<i>R</i> -Square	Adjusted <i>R</i> -Square	Std. Error of the Estimate				
1	0.940	0.883	0.878	1.946				

TABLE 1 Model	0.30 Coefficients		ndardized fficients	Standardized Coefficients	t	Sig.	
		В	Std. Error	Beta			
	(Constant)	6.831	0.650		10.516	0.000	
1	Promotion Expenses	1.181	0.091	0.940	12.911	0.000	

· Residual plot

•	Transform	into
---	-----------	------

TABLE 1	0.31 Mc	del summar	y	
Model	R	R-Square	Adjusted <i>R</i> -Square	Std. Error of the Estimate
1	0.980	0.960	0.959	1.134

Mod	lel	Unstandardized Coefficients B Std. Error		Standardized Coefficients	t	Sig.
				Beta	-	-
1	(Constant)	4.439	0.454		9.771	0.000
ŝ.	In (X)	6.436	0.279	0.980	23.095	0.000

TUKEY & MOSTELLER BULGING RULE

· To find correct functional form of regression

FIGURE 10.12 Tukey's Bulging Rule (adopted from Tukey and Mosteller, 1977).

· Suggested transformations based on the shape of the scatterplots as identified using the quadrants

TABLE 10.33 Tukey's rule for transformations

Shape of Scatter Plot	Suggested Transformation for X	Suggested Transformation for Y
Q1 (X and Y positive)	X^{p} where $p > 1$ (e.g. X^{2}, X^{3} , etc.)	Y^{q} where $q > 1$ (e.g. Y^{2}, Y^{3} , etc.)
Q2 (X negative and Y positive)	X^p where $p < 1$ (e.g., $\ln(X), \sqrt{X}$, etc.)	Y^q where $q > 1$ (e.g. Y^2 and Y^3 etc)
Q3 (Both X and Y negative)	X^p where $p < 1$ (e.g. $\ln(X), \sqrt{X}$, etc.)	Y^q where $q < 1$ (e.g. $\ln(Y)$, \sqrt{Y} , etc.)
Q4 (X positive and Y negative)	X^p where $p > 1$ (e.g. X^2 , X^3 , etc.)	Y^q where $q < 1$ (e.g. ln(Y), \sqrt{Y} , etc.)

Q2_

· Fig.

10.9, scatterplot from

should remember

https://freakonometrics.hypotheses.org/14967

Q&A CTI, pg 263)

- Regression models cannot be used for

 (a) Analysing time-series data
 (b) Understanding cause and effect relationship
- (b) Understanding association relationship
- (d) All of the above

Explanation: (a) DW, autocorrelation , (b) Functional form requires finding association relationship (c) correlation \$\$ causation

- 2. The best simple linear regression model is the one for which
 - (a) The *R*-square (coefficient) is the highest.
 - (b) The residuals follow normal distribution.
 - (c) The *p*-value corresponding to *t*-test is less than the significance value α .
 - The *p*-value corresponding to *t*-test is less than the significance value α and the residuals follow normal distribution and the residual are homoscedastic.

														not
3. V	Vhicl	1 of	the fo	ollowii	ng equat	ions are	linea	ar regre	ession 1	node	ls?		(l
6	a) Y	$=\beta_0$	$+\beta_1$	X^2	(b)	$Y = \beta_0$	+ [1/($(1+\beta_1)]$	X	(c)	$Y = \beta_0 + \beta_1$	X	(d) $\ln(Y) = \mu$	
													Cwrt	p., p.
4	A hio	h sti	eet i	eweller	v shon i	uses a re	oress	ion mo	odel V =	-10	$5+95 \times car$	at to pred	ict the price o	la al
												_	egative becau	
											d cannot take			
													ed for buildin	g the mor
	-		- CE - C										value of Y wi	
/					ater tha				0					r
(nored	while c	alcul	ating the pri	ce of the d	liamond.	
				30800			-							
-	16.1			1.1.1.			1.1	 :_4_:1						
5.					not foll					~t				
			-		coeffic				ncorre	ct.				
					values a									
	` '				error of						_			
	(d)	The	e t-te	st for 1	the coef	ficient	of the	expla	natory	varia	ble (β_1) is n	ot valid.		
6.											ome variable	is 0.8, the	e proportion	of variatio
			ome		le explai									
	(a)	0.9		(b) ().72	((:) 0.8	9	(2)	0.64				
				r =0	.8	R ²	= <u>S</u>	SR	C	P9	31)			
							5	SST		0				
7	Hete	TOS	edas	ticity	of the re	cidual i	mplie	20						
									f the ex	mlan	atory variab	es is diffe	rent	
											atory variab			
											natory variat			
											e variable in			
	8050													
8	. In	a me	odel l	ln(Y) =	$=\beta_0 + \beta$	X, the	value	of β_1 i	is					
					ue of Y					X.		N	iote: 3"	า 4 +
	(b)	Ch	ange	e in val	ue of X	for unit	char	nge in v	value of	f Y.			Quadra	
	(c)	Per	rcent	age ch	ange in	value o	f X fo	r unit	change	in va	alue of Y.		anann	717
	(2)	Pe	rcent	tage ch	ange in	value o	f Y fo	or unit	change	in v	alue of X.			
													Quikkaa	
													© vibhas n	otes 202

9. Mahalanobis distance is a

- (a) Measure of performance of the regression model.
- (c) Measure of error.

(b) Measure of outlier.

(d) Measure of explained variation.

10. Transformation of outcome variable and predictor variable is used for

- (a) Improving coefficient of determination.
- (c) Removing patterns in residual plot
- (b) Removing heteroscedasticity
- (d) All of the above

0: Professor Bell at Bellandur University, Bangalore believes that the cumulative grade point average (CGPA) of the students is negatively correlated with usage (measured in average minutes per day) of smart phones. Table 1 shows the CGPA and smart phone usage in minutes per day of 40 students.

(a) Calculate the Pearson correlation coefficient between CGPA and mobile phone usage of students.

(b) Conduct a hypothesis test at a = 0.01 to check whether CGPA and mobile phone usage are negatively correlated.

(c) Professor Bell believes that the correlation is less than -0.4. Conduct a hypothesis test at a = 0.1 to check whether the claim is correct.

Table.1: Data of CGPA and mobile phone usage (Average minutes per day)

CGPA	2.65	2.25	1.86	1.47	2.10	1.94	2.71	1.83	2.65	2.04
Phone Usage	75	89	65	136	95	103	74	109	7	98
CGPA	2.54	2.16	2.28	2.47	2.18	2.57	1.97	2.87	2.10	3.28
Phone Usage	60	93	88	81	92	78	102	70	95	89
CGPA	2.78	2.44	1.87	2.50	2.24	2.01	2.17	2.20	2.05	1.63
Phone Usage	72	82	107	80	89	100	92	91	98	123
CGPA	2.28	2.63	2.86	2.24	2.44	2.69	2.22	3.07	1.77	3.03
Phone Usage	88	76	70	89	82	74	90	65	113	66

 $r = \frac{\omega v(x_{1}Y)}{\sigma_{x} \sigma_{y}} = \frac{\sum_{i=1}^{2} (x_{i} - \bar{x})(Y_{i} - \bar{y})}{S_{x} s_{y}}$ **(a**) &αy - πτý sx sy Ξ

= 7786.37 - 10 ×86.15 × 2.326 = -0.8026

20.592 × 0.407

TABLE A.3 Upper percentage points for the Student's / distribution

ν	α									
	0.40	0.25	0.10	0.05	0.025	0.01	0.005	0.001	0.0005	
1	0.325	1.000	3.078	6.314	12.706	31.821	63,657	318.309	636.619	
2	0.289	0.816	1.886	2,920	4.303	6.965	9.925	22.327	31.599	
3	0.277	0.765	1.638	2.353	3.182	4.541	5.841	10.215	12.924	
4	0.271	0.741	1.533	2.132	2.776	3.747	4.604	7,173	8.610	
5	0.267	0.727	1.476	2.015	2.571	3.365	4.032	5.893	6.869	
6	0.265	0.718	1.440	1.943	2.447	3.143	3.707	5.208	5.959	
7	0.263	0.711	1.415	1.895	2.365	2.998	3.499	4.785	5.408	
8	0.262	0.706	1.397	1.860	2.306	2.896	3.355	4.501	5.041	
9	0.261	0.703	1.383	1.833	2.262	2.821	3.250	4.297	4.781	
10	0.260	0.700	1.372	1.812	2.228	2.764	3.169	4.144	4.587	
11	0.260	0.697	1.363	1.796	2.201	2.718	3.106	4.025	4.437	
12	0.259	0.695	1.356	1.782	2.179	2.681	3.055	3.930	4.318	
13	0.259	0.694	1.350	1.771	2.160	2.650	3.012	3.852	4.221	
14	0.258	0.692	1.345	1.761	2.145	2.624	2.977	3.787	4.140	
15	0.258	0.691	1.341	1.753	2.131	2.602	2.947	3.733	4.073	
16	0.258	0.690	1.337	1.746	2.120	2.583	2.921	3.686	4.015	
17	0.257	0.689	1.333	1.740	2.110	2.567	2.898	3.646	3.965	
18	0.257	0.688	1.330	1,734	2.101	2.552	2.878	3.610	3.922	
19	0.257	0.688	1.328	1.729	2.093	2.539	2.861	3.579	3.883	
20	0.257	0.687	1.325	1.725	2.086	2.528	2.845	3.552	3.850	
21	0.257	0.686	1.323	1.721	2.080	2.518	2.831	3.527	3.819	
22	0.256	0.686	1.321	1.717	2.074	2.508	2.819	3.505	3.792	
23	0.256	0.685	1.319	1.714	2.069	2.500	2.807	3.485	3.768	
24	0.256	0.685	1.318	1,711	2.064	2.492	2.797	3.467	3.745	
25	0.256	0.684	1.316	1,708	2.060	2.485	2.787	3.450	3.725	
26	0.256	0.684	1.315	1.706	2.056	2.479	2.779	3.435	3.707	
27	0.256	0.684	1.314	1.703	2.052	2.473	2.771	3.421	3.690	
28	0.256	0.683	1.313	1.701	2.048	2.467	2.763	3.408	3.674	
29	0.256	0.683	1.311	1.699	2.045	2.462	2.756	3.396	3.659	
30	0.256	0.683	1.310	1.697	2.042	2.457	2.750	3.385	3.646	
35	0.255	0.682	1.306	1.690	2.030	2.438	2.724	3.340	3.591	
40	0.255	0.681	1.303	1.684	2.021	2.423	2.704	3.307	3.551	
60	0.254	0.679	1.296	1.671	2.000	2.390	2.660	3 232		1.
20	0.254	0.677	1.289	1.658	1.980	2.358	2.617	3.160C	vibhas notes 20)21
∞	0.253	0.674	1.282	1.645	1.960	2.326	2.576	3.090	3.291	

critical point: between 2.423 and 2.438 \therefore reject Ho and accept Ha

(c)
$$H_0: p \ge -0.4$$
 $x = 0.1$
 $H_a: p < -0.4$

$$t = -0.8026 + 0.4 = -4.163$$

0.0967

critical point (for right tail): b/w 1.303 & 1.306

Calculate the Spearman rank correlation between the corruption rank and literacy rank.

TABLE 3 Rank based on corruption (1 implies high corruption	TABLE 3	Rank base	d on corruption	(1 implies high	corruption)
---	---------	-----------	-----------------	-----------------	-------------

Q:

State	Bihar	Jammu and Kashmir	Madhya Pradesh	Uttar Pradesh	Karnataka	Rajasthan	Tamil Nadu	Chhattisgarh
Rank	1	2	3	4	5	6	7	8
State	Delhi	Gujarat	Jharkhand	Kerala	Orissa	Andhra Pradesh	Haryana	Himachal Pradesh
Rank	9	10	11	12	13	14	15	16

TABLE 4. Rank based on literacy rate (1 implies high literacy)

State	Bihar	Jammu and Kashmir	Madhya Pradesh	Uttar Pradesh	Karnataka	Rajasthan	Tamil Nadu	Chhattisgarh
Rank	16	12	10	11	7	15	4	9
State	Delhi	Gujarat	Jharkhand	Kerala	Orissa	Andhra Pradesh	Haryana	Himachal Pradesh
Rank	2	5	13	1	8	14	6	3

Conduct a hypothesis test to check whether corruption and literacy rate are negatively correlated at a = 0.05.

state	Rank corr	Rank Lit	(D) (diff)
Bihar	۱	16	١٢
J&K	2	12	ιο

r= -0.4588 (negative correlation)

$H_0: \rho = 0$	x = 0.05	$\alpha/2 = 0.025$
$H_a: p \neq 0$	dof = 14	

t=-1.932

p-value for 2-tailed test is 2.145

: cannot reject Ho

Multivariate Regression (MVLR)

Predict multiple dependent variables from multiple independent variables

 $i \in \{1, 2, ..., n\}$ ke £1,2,...,m3 © vibhas notes 2021

- $y_{ik} \in \mathbb{R}$ is the *k*-th real-valued response for the *i*-th observation
- $b_{0k} \in \mathbb{R}$ is the regression intercept for k-th response
- $b_{ik} \in \mathbb{R}$ is the *j*-th predictor's regression slope for *k*-th response
- $x_{ii} \in \mathbb{R}$ is the *j*-th predictor for the *i*-th observation
- $(e_{i1}, \ldots, e_{im}) \stackrel{\text{iid}}{\sim} N(\mathbf{0}_m, \mathbf{\Sigma})$ is a multivariate Gaussian error vector

Assumptions of MVLR

- 1. Relationship WW X; & Yk is linear
- 2. Xij and Yik are observed random variables (known constants)
- 3. (ei1, ..., eim) id N (Om, E) is an unobserved random vector
- 4. $b_{k} = (b_{0k}, b_{1k}, ..., b_{pk})'$ for $k \in \{1, ..., m\}$ are unknown constants 5. $(y_{1k}|x_{12}, ..., x_{ip}) \sim NCb_{0k} + \sum_{j=1}^{r} b_{jk} x_{ij}, \sigma_{kk})$ for each $k \in \{1, ..., m\}$

MULR Model-Matrix Form

http://users.stat.umn.edu/~helwig/notes/mvlr-Notes.pdf

						Y	'= X1	8+E						
(···· ··· ···	У1 <i>т</i> У2т У3т : Упт)	I	$\begin{pmatrix} 1\\1\\1\\\vdots\\1 \end{pmatrix}$	x ₁₁ x ₂₁ x ₃₁ : x _{n1}	x ₁₂ x ₂₂ x ₃₂ : x _{n2}	···· ···· ···	$ \begin{array}{c} x_{1p} \\ x_{2p} \\ x_{3p} \\ \vdots \\ x_{np} \end{array} $	$\begin{pmatrix} b_{01} \\ b_{11} \\ b_{21} \\ \vdots \\ b_{p1} \end{pmatrix}$	 b _{0m} b _{1m} b _{2m} : b _{pm})	+	(e11 e21 e31 : en1	···· ··· ···	$ \begin{array}{c} \boldsymbol{e}_{1m} \\ \boldsymbol{e}_{2m} \\ \boldsymbol{e}_{3m} \\ \vdots \\ \boldsymbol{e}_{nm} \end{array} $
Hat	- M	.atrix												

$$\hat{y} = X \hat{B}$$

= X (X^T X)^T X^T Y
= HY

symmetric, idempotento vibhas notes 2021

Bias-Variance Trade-off

- · n observations
- · SLR with X & Y
- · Normally distributed error term with variance σ^2

$$\varepsilon \sim N(0, \sigma^2)$$

- Error ε is ideally close to 0
 True value of β unknown
 Estimated as β such that SSR is minimum COLS)

· Loss function (sum of squared errors)

$$L_{OLS}(\hat{\beta}) = \sum_{i=1}^{\infty} (y_i - x_i \hat{\beta})^2 = ||y - x_i \hat{\beta}||^2$$

$$\hat{\boldsymbol{\beta}}_{\text{old}} = (\boldsymbol{X}^{\mathsf{T}} \boldsymbol{X})^{\mathsf{T}} (\boldsymbol{X}^{\mathsf{T}} \boldsymbol{Y})$$

Bias

- Difference between true population parameter and expected sample estimator

- Measures accuracy

Variance

- Measures spread or uncertainty

$$Var(\hat{\beta}_{OLS}) = \sigma^2 (X^T X)^{-1}$$

- Unknown error variance σ^2 is estimated from residuals as

$$\hat{\sigma}^2 = \underline{s}^T \underline{s} \qquad \underline{s} = \underline{y} - X \hat{\beta}$$

ETE: SSE of E n: no. of samples m: no. of parameters being estimated (\$)

Visualizing - Bull's Eye Model

Source: http://scott.fortmann-roe.com/docs/BiasVariance.html

Fig. 1 Graphical illustration of bias and variance.

Model's Error in Terms of Bias and Variance

- · Error decomposed into 3 parts
 - () Errrr due to large variance
 - (2) Error due to significant bias
 - (3) Unexplained error

$$E(\varepsilon) = (\varepsilon(x\beta) - X\beta)^2 + E((x\beta) - \varepsilon(x\beta)) + \sigma^2$$

= $bias^2$ + variance + σ^2

LASSO & RIDGE REGRESSION

· Reduce model complexity (read slides for details)

1. LASSO

- · Least Absolute Shrinkage Selector Operator
- · Same assumptions as MLR except normality of error
- · Tends to zero out (remove) some features (feature selection)
- Uses L₁ norm or absolute values of coefficients scaled by shrinkage

$$\sum_{i=1}^{n} \left(y_i - \hat{y}_i \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

 \cdot λ is tunable

2. Ridge

- · Shrinkage term added to objective SSE function
- · $\lambda = 0$ has no effect, $\lambda \rightarrow \infty$ regression coefficient estimates $\rightarrow 0$

$$\sum_{i=1}^{n} \left(y_{i} - \hat{y}_{i} \right)^{2} + \lambda \sum_{j=1}^{p} \left(\beta_{j}^{2} \right)$$

- · Used when data suffers from multi-colinearity
- · Must scale input

$$\overline{\mathcal{X}}_{ij} = \frac{\chi_{ij}}{\sqrt{\frac{1}{2} \mathcal{E}_{i+1}^{\circ} (\chi_{ij} - \overline{\chi}_{j})^{2}}}$$

Source: An Introduction to Statistical Learning by Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani Source: Towards Data Science

LI regularization L2 regularization

- · Correlated vars have similar weights in Ridge
- · One high & others close to 0 for Lasso (correlated varc)
- · Achieve reduction in variance without increase in bias

Choice of Regularization Parameter

- · How much bias acceptable to decrease variance?
- · Choose λ so that AIL or BIC is smallest \bigcirc vibhas notes 2021

- · Estimate with many different values for λ and choose one that minimizes AIC or BIC
- Akaike Information Criterion Clike R²)

· Bayesian Information Criterion Clike adjusted R²)

3. Elastic Net Regression

$$\hat{\beta} = \operatorname{argmin} \left(\|y - X\beta\|^2 + \lambda_2 \|\beta\|^2 + \lambda_1 \|\beta\| \right)$$

 $\beta = \int_{\Gamma} \int$

POLYNOMIAL REGRESSION MODEL

http://users.stat.umn.edu/~helwig/notes/polyint-Notes.pdf

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

© vibhas notes 2021

parameters

Model Form

 $y_i = \sum_{j=0}^{p} b_j x_i^j + \varepsilon_i$

$$b_0 = \text{intercept}$$
 and $x_0 = 1$
 $\varepsilon_i \sim N(0, \sigma^2)$

Matrix Form

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^p \\ 1 & x_2 & x_2^2 & \cdots & x_2^p \\ 1 & x_3 & x_3^2 & \cdots & x_3^p \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^p \end{pmatrix} \begin{pmatrix} b_0 \\ b_1 \\ b_2 \\ \vdots \\ b_p \end{pmatrix} + \begin{pmatrix} e_1 \\ e_2 \\ e_3 \\ \vdots \\ e_n \end{pmatrix}$$

PR and MLR

- $\cdot x \in x^n$ are not independent in PR
- · n > p to fit polynomial regression model
- · Multicolinearity in PR Chigh power, high multicolinearity)
- · One solution: mean-centering $(x^n \rightarrow x^n mean(x^n))$

folution 2: Orthogonal Polynomials

$$z_{0} = a_{0}$$

$$z_{1} = a_{1} + b_{1}x$$

$$z_{2} = a_{2} + b_{2}x + c_{2}x^{2}$$

$$z_{3} = a_{3} + b_{3}x + c_{3}x^{2} + d_{3}x^{3}$$
orthogonal
polynomials

Such that $z_j^T Z_k = 0$ for all $j \neq k$

Non-Linear Regression

$$\cdot$$
 Detecting : theory, scatterplot, seasonality in data, insignificant β

- · Can do incremental F-tests
- Two ways to construct non-linear features
 - 1. Explicitly feature vector
 - 2. Implicitly using kernels (read MI unit 2 SVMs) done by the model

Popular Models

- 1. Exponential model y=ae^{bx}
- 2. Power model y = axb
- 3. Saturation growth model ---- y = ax © vibhas notes 2021 b+x

Logistic Regression

- · For classification problems
- Odds: odds of an event with probability p occurring = <u>p</u> Cratic of success : failure) ^{1-p}
- Eq: with binary gender, will a customer purchase a product or not

Gender	Pure	chase	
	Yes	No	Total
Female	159	106	265
Male	121	125	246

- P(female purchase | customer is female) = 159 265
- P(not purchasing) customer is female) = 106 265
 - odds(female purchasing) = 159 = 1.5

higher odds -> higher chance of success

Odds Ratio

- · Which group (male/female) has higher odds of success
- Odds ratio (female) = <u>odds of successful female purchase</u>
 odds of successful mathematical successful mathematical successful mathematical successful mathematical successful mathematical successful success

• Odds = <u>n</u> 1-T1

odds ratio = $(\pi_1)/(1-\pi_1)$ $(\pi_0)/(1-\pi_0)$.

Logit Function

https://towardsdatascience.com/logit-of-logistic-regression-understanding-the-fundamentals-f384152a33d1

Logistic regression model

- $\beta = 0$ implies that P(Y|x) is same for each value of x
- β > 0 implies that P(Y|x) is increases as the value of x increases
- β < 0 implies that P(Y|x) is decreases as the value of x increases

Likelihood Function for Binary Logistic Function

$$P(Y=1 | Z = \beta_0 + \beta_1 x_1 + ... + \beta_m x_m) = \pi (Z) = e pdf$$

 $1 + e^2$

Probability Likelihood Function

$$P(Y_i) = \pi(Z)^{Y_i} (1 - \pi(Z))^{-Y_i}$$

Estimation of Parameters

- · Assume n observations Y1, Y2, ..., Yn
- Likelihood function: joint probability $L = P(Y_{1}, Y_{2}, ..., Y_{n})$ for a specific $z_i = \beta_0 + \beta_1 z_{1i} + ... + \beta_n z_{ni}$ is

$$L = P(Y_{i}, Y_{2}, ..., Y_{n}) = \prod_{i=1}^{n} \pi(Z_{i})^{Y_{i}} (1 - \pi(Z_{i}))^{I-Y_{i}}$$

· Log-likelihood function

$$lm(L) = \underbrace{\mathcal{L}}_{i=1}^{n} Y_i lm \left[\pi(z_i) \right] + \underbrace{\mathcal{L}}_{i=1}^{n} C_i - Y_i lm \left[1 - \pi(z_i) \right]$$

$$(i = 1) \quad (i = 1$$

- · For simplicity, Let Zi= Bo+B,X;
 - $Y_{i} \ln \left(\frac{e^{\beta_{0} + \beta_{1} \pi_{i}}}{1 + e^{\beta_{0} + \beta_{1} \pi_{i}}} \right) + (1 Y_{i}) \left(\ln \left(1 \frac{e^{\beta_{0} + \beta_{1} \pi_{i}}}{1 + e^{\beta_{0} + \beta_{1} \pi_{i}}} \right) \right)$
- $= Y_{i} \ln \left(\frac{e^{\beta_{0} + \beta_{1} z_{i}}}{1 + e^{\beta_{0} + \beta_{1} z_{i}}} \right) + (1 Y_{i}) \left(\ln \left(\frac{1}{1 + e^{\beta_{0} + \beta_{1} z_{i}}} \right) \right)$
- = Yi (Botpixi) In(1+e^{Botpixi})

$$L = ln(L) = \sum_{i=1}^{n} Y_{i}(\beta_{0} + \beta_{1}X_{i}) - \sum_{i=1}^{n} ln(1 + e^{\beta_{0} + \beta_{1}X_{i}})$$

· Partial derivatives wrt Bo & B,

$$\frac{\partial LL}{\partial \beta_0} = \frac{\mathcal{E}}{i=1} \frac{\gamma_i}{i=1} - \frac{\mathcal{E}}{i=1} \frac{e}{1+e^{\beta_0 + \beta_1 x_i}} = 0$$

$$\frac{\partial LL}{\partial \beta_{1}} = \frac{\partial}{\partial z} Y_{i} \chi_{i} - \frac{\partial}{\partial z} \frac{\chi_{i} e}{\sum_{i=1}^{n} \frac{\chi_{i} e}{\sum_$$

Interpretation of LR Coefficients

- · βι: change in encodds ratio) for unit change in X,
- · B1 : change in odds ratio by e^{B1}

$$\beta_{1} = \ln \left(\frac{\pi(x+1)/(1-\pi(x+1))}{\pi(x)/(1-\pi(x+1))} \right)$$

Q: P(passing exam)

https://en.wikipedia.org/wiki/Logistic_regression

Hours	Passing exam					
of study	Log-odds	Odds	Probability			
1	-2.57	0.076 ≈ 1:13.1	0.07			
2	-1.07	0.34 ≈ 1:2.91	0.26			
3	0.44	1.55	0.61			
4	1.94	6.96	0.87			
5	3.45	31.4	0.97			

-		Coefficient	Std.Error	P-value (Wald)
-	Intercept	-4.0777	1.7610	0.0206
•	Hours	1.5046	0.6287	0.0167

$$Y_i = \frac{1}{1 + \rho^{-2i}}$$

Logistic Regression Model Development

SPLITTING DATA

- · Training dataset: sample used to fit model
- Validation dataset: sample used to provide unbiased evaluation of a model — tuning hyperparameters — becomes biased
- Test dataset: provides unbiased evaluation of final model no further tuning

· Dataset split ratio: depends on model; can be 80-20, 70-30

CONFUSION MATRIX

Predicted

Real	email	Spam	email

	real email	TN	FP
Actual			

sp	am	email	FN		TP	

Accuracy

Recall

- · How many the cases caught (sensitivity); not missed
- · True positive rate

$$ecall = TP$$
$$TP + FN$$

Specificity

· How many -ve cases caught; not missed

٢

Precision

· Correct positive cases out of predicted positive cases

```
precision = <u>TP</u>
TP + FP
```

F1 Score

· Harmonic mean of precision and recall

F1 score = <u>2 × recall × precision</u> recall + precision

- · Higher score -> better (o is worst, I is best)
- · Only if precision and recall are 100%, F1 = 1

Q: which model is better wrt class A?

	Pred	iction		Pred	iction
	A	4		A	A
	TP	FN		TP	FN
Actual _	60	34	A Actual	90	4
	FP	TN		FP	TN
A)	ι	12	A	8	5
		ບ			/bhas notes 2021

Accuracy = TP + TN	Accuracy = <u>TP + TN</u> TP + FP + TN + FN
TP+ FP+TN+FN	
$=\frac{72}{107}=0.67$	$= \frac{95}{107} = 0.89$
Precision,= <u>TP</u> TP+FP	Precision ₂ = <u>TP</u> TP+FP
= <u>60</u> = 0.98 61	= <u>90</u> = 0.92 98
$Recall_{t} = \frac{TP}{TP+FN}$	Recall _a = <u>TP</u> TPt FN
= <u>60</u> = 0.64 94	= <u>40</u> = 0.96 94
F1 Score = $2 \times \frac{60}{94} \times \frac{60}{61}$	F1 Score = $2 \times \frac{90}{98} \times \frac{90}{94}$
<u>60</u> + <u>60</u> 94 61	<u>90</u> + <u>90</u> 98 94
$=\frac{24}{31}=0.77$	= <u>16</u> = 0.94 16

. Model 2 is better

- · Concordant: A pair of the and -he observations where the model has a cutoff probability to correctly classify them
- If probability of the sample 7 probability of the sample,
 concordant pair
 © vibhas notes 2021

- · If probability of the sample < probability of -ve sample, discordant pair
- · Area under ROC curve is proportion of concordant pairs in the dataset

Hours	Passing exam								
of study	Probability	/ Labe							
1	0.070	0							
2	0.260	0							
3	0.610	0							
4	0.870	1							
5	0.950	1							
6	0.970	1							
7	0.980	0							

(1,5): concordant pair (4,7): discordant pair

ROC - Receiver Operating Characteristics

ROC curve: FPR = 1-specificity = 1-TNR Vs TPR = sensitivity
 Cfor diff threshold values)

Area Under Curve CAUCD

Probability that a model will rank a randomly chosen the higher than randomly chosen -ve

AUC = P(Random Positive Observation) > P(Random Negative Observation)

AUC = 0.629

AUC = 0.801

<u>Creneral Rule for Acceptance</u>

- · If area ≤ 0.5 → no discrimination
- · IF 0.7 ≤ area < 0.8 → acceptable
- If $0.8 \leq area < 0.9 \longrightarrow$ excellent
- · If area ≥ 0.9 ----> outstanding

Youden's Index for Optimal Cutoff Probability

· Best sensitivity for least FPR

Youden's Index = J statistic = max (sensitivity(p) + specificity(p)-1) P

Cost-Based Cut-off Probability

•	Pena	li	ze	mi	scla	nssi	fico	tio	ns	_	٢,	;	۷	mis	cla	s	ify	0		2.0			FP)		
											C	•	۷	Mi S	cla	ssi	fy	١		as	ט	C	FN)		
					Pre	zdi	cti	ന																	
					0			1																	
													op	otin	na'	۱	Cv	ntol	ff	P	rol	oab	ilit	Ŋ	
Actu	(a)		0		-			(⁰⁾						Mi	<u>^</u>	ſ	2-01	٩	+	C ₁₀	, P,	٦،			
														P			01	01							
			l		C10			-						th) Nes	sha	o\d								
																				©v	ibha	as n	otes	2021	1

Lorenz curve

- 2. In a multiple linear regression
 - (a) R^2 and adjusted R^2 are non-decreasing functions.
 - (b) R^2 is an increasing function, whereas adjusted R^2 is non-decreasing function.
 - (c) R² and adjusted R² are increasing functions.
 - R^2 is a non-decreasing function and adjusted R^2 may increase or decrease.

3. Which of the following equation(s) is/are not multiple linear regression?

(a) $\ln(Y) = \beta_0 + \beta_1 X_1 + \beta_2 X_2$

(b) $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \frac{1}{1 + \beta_2} X_1 X_2$

(c) $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2$

(d) $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1^2 X_2^2$

4. In multiple regression models, multi-collinearity may result in

- (a) Removing a statistically significant explanatory variable from the model.
- (b) The regression coefficient may have opposite sign.
- (c) Adding a new variable to the model may cause huge change to the regression coefficient.
- (d) All of above.

Multicolinearity destabilizes model

5. When a new variable is added to the regression model, the *R*-square value increases by

- (x) Square of the semi-partial correlation between added variable and the response variable.
- (b) Correlation coefficient between the added variable and the response variable.
- (c) Partial correlation coefficient between added variable and the response variable.
- (d) Semi-partial coefficient between added variable and the response variable.

LOOK: VIF

6. If there is an auto-correlation between the successive errors in a time series regression then (a) A statistically insignificant variable may be added to the model.

- (b) A statistically significant variable may be removed from the model.
- (c) The standard error of estimate of the regression parameter is underestimate(d)
- (d) The Durbin-Watson test statistic value will be close to 2.
- 7. When a stepwise regression model is developed, the first variable that is added is
 - (a) The variable with highest variance.
 - (b) The variable that has the least variance.
 - The variable that has highest correlation with the dependent variable. © vibhas notes 2021
 - (d) The variable with least covariance with the dependent variable.

8	(b) Factor by which (b) Factor by which	ch the regression c ch the <i>t</i> -statistic va ch the <i>t</i> -statistic is	oefficient is increase(alue is inflate(d) deflated by a factor o alue is inflated by a fa	of \sqrt{VIF} .	
9	D. Variable selection in (م) Partial F-test	n stepwise regressic (b) <i>F</i> -test	on is achieved through (c) Correlation	: (d) <i>t</i> -test	

10. A regression model is developed between salary earned by a graduating MBA student using a sample of 450 students and their undergraduate discipline (where the base category is discipline "arts"). The regression output is shown in Table 10.39.

		Unstandardiz	ed Coefficients	2		
Model		B Std. Error		t	Sig.	
1	(Constant)	198246.40	45690.10	4.338	1.8×10 ⁻⁰⁵	
	Science	39430.00	20020.60	2.121	0.036	
	Engineering	56940.50	22450.67	2.536	0.011	
	Commerce	-14250.89	8932.45	1.5954	0.111	

Which of the following statements are true at 5% significance:

Students from arts category earn minimum average salary.

Students from engineering category earn the maximum average salary.

(1) The average salaries earned by arts and commerce graduates are same.

(d) Science students earn 39430 more than arts students on average.

11. A regression model is developed for salary of employees of a company using gender (*G*), work experience (WE) and the interaction variable $G \times WE$. G = 1 is coded as female and G = 0 is male. The corresponding regression equation is shown below (assume that all predictors are significant):

 $Y = 45,490.50 + 3000.900 \times G + 1497.89 \ WE - 990.75 \ G \times WE$

Which of the following statements are true?

- (a) Average salary of female employees is higher than male employees
- (b) Female employees earn 3000.90 more than male employees

Increase in salary with work experience for male employees is higher than female employees.

(d) In the long run, male employees earn more than female employees.

12. Which of the following measures are used for identifying influential observations in the data?

- (a) Cook's distance
- (c) Leverage value
- (b) Mahalanobis distance
- value (d) All of above

13. Transformation of variables will be useful to solve the following problem(s) in MLR:

- (a) Multi-collinearity
- (b) Outliers

×

- Heteroscedasticity
- (e) None of above

Regression model was developed on a time-series data, the value of Durbin–Watson statistic value is 0.2. Then
 (a) There is a significant correlation between the independent variable and dependent variable.

- () There is a positive auto-correlation between errors.
- (c) There is a negative auto-correlation between errors.
- (d) There is no auto-correlation.

15. The independent variable that has the highest impact on the dependent variable is given by

- (a) The variable with largest coefficient value.
- (b) The variable with largest absolute coefficient value.
 - (c) The variable with largest standardized coefficient value.
 - (d) The variable with largest absolute standardized coefficient value.